Starters for Forklifts

Starter for Forklifts - The starter motor these days is typically either a series-parallel wound direct current electric motor which consists of a starter solenoid, which is similar to a relay mounted on it, or it can be a permanent-magnet composition. As soon as current from the starting battery is applied to the solenoid, mainly through a key-operated switch, the solenoid engages a lever that pushes out the drive pinion which is located on the driveshaft and meshes the pinion utilizing the starter ring gear that is seen on the engine flywheel.

The solenoid closes the high-current contacts for the starter motor, which begins to turn. When the engine starts, the key operated switch is opened and a spring in the solenoid assembly pulls the pinion gear away from the ring gear. This particular action causes the starter motor to stop. The starter's pinion is clutched to its driveshaft by means of an overrunning clutch. This allows the pinion to transmit drive in only one direction. Drive is transmitted in this manner via the pinion to the flywheel ring gear. The pinion continuous to be engaged, for instance for the reason that the operator did not release the key as soon as the engine starts or if the solenoid remains engaged since there is a short. This causes the pinion to spin separately of its driveshaft.

This aforesaid action prevents the engine from driving the starter. This is an essential step since this particular kind of back drive will allow the starter to spin so fast that it could fly apart. Unless adjustments were made, the sprag clutch arrangement will preclude the use of the starter as a generator if it was employed in the hybrid scheme discussed earlier. Typically a standard starter motor is intended for intermittent use that would prevent it being used as a generator.

Thus, the electrical parts are meant to work for more or less under 30 seconds to be able to avoid overheating. The overheating results from very slow dissipation of heat due to ohmic losses. The electrical parts are intended to save weight and cost. This is the reason the majority of owner's guidebooks utilized for vehicles suggest the driver to stop for at least 10 seconds right after every ten or fifteen seconds of cranking the engine, if trying to start an engine that does not turn over instantly.

During the early part of the 1960s, this overrunning-clutch pinion arrangement was phased onto the market. Prior to that time, a Bendix drive was utilized. The Bendix system functions by placing the starter drive pinion on a helically cut driveshaft. Once the starter motor begins turning, the inertia of the drive pinion assembly enables it to ride forward on the helix, hence engaging with the ring gear. When the engine starts, the backdrive caused from the ring gear allows the pinion to exceed the rotating speed of the starter. At this moment, the drive pinion is forced back down the helical shaft and thus out of mesh with the ring gear.

The development of Bendix drive was developed in the 1930's with the overrunning-clutch design referred to as the Bendix Folo-Thru drive, developed and launched during the 1960s. The Folo-Thru drive consists of a latching mechanism along with a set of flyweights in the body of the drive unit. This was a lot better because the average Bendix drive used in order to disengage from the ring as soon as the engine fired, though it did not stay functioning.

When the starter motor is engaged and starts turning, the drive unit is forced forward on the helical shaft by inertia. It then becomes latched into the engaged position. Once the drive unit is spun at a speed higher than what is attained by the starter motor itself, like for instance it is backdriven by the running engine, and next the flyweights pull outward in a radial manner. This releases the latch and allows the overdriven drive unit to become spun out of engagement, thus unwanted starter disengagement could be avoided prior to a successful engine start.